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squarelatticewherequbits liveon edgesof thelattice. TheHamiltonian is

H = −
X

s

As −
X

p

Bp, As =
Y

r 2 s

Xr , Bp =
Y

r 2 p

Zr

where s represents a star and p represents a plaquette. Pauli X and Z operators act on each qubit as Z|0i = |0i ,

Z|1i = −|1i , X|0i = |1i and X|1i = |0i . Themodel isexactly solvablesince interaction termsAs and Bp commute

with each other, and ground statessatisfy

As| i = | i , Bp| i = | i , 8s,p.

A groundstateof theHamiltoniancanbeviewedasacondensationof string-likeextendedobjects. Let usconsider a

trivial product state|0i⌦N over theentirelattice(N isthenumber of total qubits) andobservethat Bp|0i⌦N = |0i⌦N .

Then, onenotices that thefollowing isa ground state:

| loopi =
Y

s

(1+ As)|0i⌦N

sinceAs(1+ As) = 1+ As. A ground state | loopi isasuperposition of statesAs1
As2

As3
···|0i⌦N wheres1,s2,s3 ···

represent stars. Since As are products of Pauli-X type operators, applications of As to a product state |0i⌦N will

flip the signs of qubits: |0i ! |1i . A term As|0i⌦N generated by a single application of a star operator As can be

viewed asastatewith onesmall loop (Fig. ??(b)). Similarly, a termAs1
As2

|0i⌦N with neighboringstarss1 and s2 is

a statewith a larger loop. In general, a stateAs1
As2

As3
···|0i⌦N can beviewed asloopsof varioussizes. Therefore,

a ground statecan berepresented asan equal superposition of all theloop states:

| loopi =
X

8γ

|γi

whereγ representsan arbitrary loop configuration. In this sense, a ground stateof Z2 spin liquid can beviewed as

ascondensationsof fluctuating string-likeobjects.

In general, one can construct a quantum many-body system with several types of strings along with various

conservation rules that aredetermined by gaugetheoretical considerations. Levin and Wen derived themost general

form of wave-functions that are represented as condensations of string-like extended objects in two-dimensional

systemsby further assuming that wave-functionspossessscale invariance. Indeed, onemay easily seethat a ground

state of Z2 spin liquid has scale invariance since it is a superposition of loops of all the di↵erent sizes and shapes.

In this sense, models of string-net condensations correspond to fixed-points of RG transformations. The presence

of scale invariance is a requirement from TQFT, and thus, string-net condensations are described by TQFT. Yet,

scale invariance isnot a necessary condition for thepresenceof topological order. In fact, quantum fractal codesdo

not have full continuous scalesymmetries, but discretescalesymmetries only where thenumber of ground states is

exponential in thelinear length of thelattice, and ground statescorrespond to limit cyclesof RG transformations.

Topological symmetries of Hamiltonians: Geometric properties of string-net condensations give rise to a

certain global symmetry of the Hamiltonian where symmetric operators have topologically non-trivial shapes. To

captureglobal properties, it isconvenient toconsider topological symmetriesof theToriccodeHamiltonians. Formally,

a symmetry of theHamiltonian can becaptured by unitary transformationswhich satisfy thefollowing:

U†HU = H ) [H,U] = 0
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FIG. 1: (a) Propagation of quasi-particles by a(x) and b(x) (b) A pair of localized excitations e1 and e2 with elongated
excitationse⇤1 and e⇤2

So, interaction termsAs and Bp aresymmetry operatorsof theHamiltonian

[As,H] = [Bp,H] = 0.

Therearealso symmetry operatorswith topologically non-trivial geometriesasshown in Fig:

[H,`
(Z )
0 ] = [H,`

(Z )
1 ] = [H,r

(Z )
0 ] = [H,r

(Z )
1 ] = 0.

These operators cannot be written as products of As or Bp, and act nontrivially inside the ground state space,

transforming degenerate ground states into each other. This may be viewed from the fact that these non-trivial

symmetry operatorsmay anti-commutewith each other:

(
`
(Z )
0 , `

(Z )
1

`
(X )
0 , `

(X )
1

)

wherelogical operatorsin thesamecolumn anti-commutewith each other whilelogical operatorsin di↵erent columns

commutewitheachother. Asthisexampleshows, global symmetriesof theHamiltoniancan becapturedby symmetry

operatorswith topologically non-trivial geometries.

These non-trivial symmetries operators arealso important in quantum information theoretical context. It is well

known that Z2 spin liquid, or theToric code, can beused for storing logical qubits securely inside theground state

spacethat isprotected by amassgap. Thisisbecauseground statesarehighly entangled, and no local errorsdestroy

the ground state properties and encoded information. Since these non-trivial symmetry operators are responsible

for transforming encoded information, they are called logical operators in quantum information science community.

Onecan characterizeextended objectsarising in quantumspin systemsby lookingat topological propertiesof logical

operators. Let us consider a higher-dimensional generalization of the Toric code. In general, the Toric code model

on a D-dimensional lattice may have pairs of m-dimensional and D − m-dimensional logical operators where m is

5
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squarelatticewherequbits liveon edgesof thelattice. TheHamiltonian is

H = −
X

s

As −
X

p

Bp, As =
Y

r 2 s

Xr , Bp =
Y

r 2 p

Zr

where s represents a star and p represents a plaquette. Pauli X and Z operators act on each qubit as Z|0i = |0i ,

Z|1i = −|1i , X|0i = |1i and X|1i = |0i . Themodel isexactly solvablesince interaction termsAs and Bp commute

with each other, and ground statessatisfy

As| i = | i , Bp| i = | i , 8s,p.

A groundstateof theHamiltoniancanbeviewedasacondensationof string-likeextendedobjects. Let usconsider a

trivial product state|0i⌦N over theentirelattice(N isthenumber of total qubits) andobservethat Bp|0i⌦N = |0i⌦N .

Then, onenotices that thefollowing isa ground state:

| loopi =
Y

s

(1+ As)|0i⌦N

sinceAs(1+ As) = 1+ As. A ground state | loopi isasuperposition of statesAs1
As2

As3
···|0i⌦N wheres1,s2,s3 ···

represent stars. Since As are products of Pauli-X type operators, applications of As to a product state |0i⌦N will

flip the signs of qubits: |0i ! |1i . A term As|0i⌦N generated by a single application of a star operator As can be

viewed asastatewith onesmall loop (Fig. ??(b)). Similarly, a termAs1
As2

|0i⌦N with neighboringstarss1 and s2 is

a statewith a larger loop. In general, a stateAs1
As2

As3
···|0i⌦N can beviewed asloopsof varioussizes. Therefore,

a ground statecan berepresented asan equal superposition of all theloop states:

| loopi =
X

8γ

|γi

whereγ representsan arbitrary loop configuration. In this sense, a ground stateof Z2 spin liquid can beviewed as

ascondensationsof fluctuating string-likeobjects.

In general, one can construct a quantum many-body system with several types of strings along with various

conservation rules that aredetermined by gaugetheoretical considerations. Levin and Wen derived themost general

form of wave-functions that are represented as condensations of string-like extended objects in two-dimensional

systemsby further assuming that wave-functionspossessscale invariance. Indeed, onemay easily seethat a ground

state of Z2 spin liquid has scale invariance since it is a superposition of loops of all the di↵erent sizes and shapes.

In this sense, models of string-net condensations correspond to fixed-points of RG transformations. The presence

of scale invariance is a requirement from TQFT, and thus, string-net condensations are described by TQFT. Yet,

scale invariance isnot a necessary condition for thepresenceof topological order. In fact, quantum fractal codesdo

not have full continuous scalesymmetries, but discretescalesymmetries only where thenumber of ground states is

exponential in thelinear length of thelattice, and ground statescorrespond to limit cyclesof RG transformations.

Topological symmetries of Hamiltonians: Geometric properties of string-net condensations give rise to a

certain global symmetry of the Hamiltonian where symmetric operators have topologically non-trivial shapes. To

captureglobal properties, it isconvenient toconsider topological symmetriesof theToriccodeHamiltonians. Formally,

a symmetry of theHamiltonian can becaptured by unitary transformationswhich satisfy thefollowing:

U†HU = H ) [H,U] = 0
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FIG. 1: (a) Propagation of quasi-particles by a(x) and b(x) (b) A pair of localized excitations e1 and e2 with elongated
excitationse⇤1 and e⇤2

So, interaction termsAs and Bp aresymmetry operatorsof theHamiltonian

[As,H] = [Bp,H] = 0.
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These operators cannot be written as products of As or Bp, and act nontrivially inside the ground state space,

transforming degenerate ground states into each other. This may be viewed from the fact that these non-trivial

symmetry operatorsmay anti-commutewith each other:
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wherelogical operatorsin thesamecolumn anti-commutewith each other whilelogical operatorsin di↵erent columns

commutewitheachother. Asthisexampleshows, global symmetriesof theHamiltoniancan becapturedby symmetry

operatorswith topologically non-trivial geometries.

These non-trivial symmetries operators arealso important in quantum information theoretical context. It is well

known that Z2 spin liquid, or theToric code, can beused for storing logical qubits securely inside theground state

spacethat isprotected by amassgap. Thisisbecauseground statesarehighly entangled, and no local errorsdestroy

the ground state properties and encoded information. Since these non-trivial symmetry operators are responsible

for transforming encoded information, they are called logical operators in quantum information science community.

Onecan characterizeextended objectsarising in quantumspin systemsby lookingat topological propertiesof logical

operators. Let us consider a higher-dimensional generalization of the Toric code. In general, the Toric code model

on a D-dimensional lattice may have pairs of m-dimensional and D − m-dimensional logical operators where m is
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What is a quantum computer?

A machine that uses 
coherent quantum 
systems to speed-up 
calculations



Incoherence VS Coherence



Quantum Computing is Different

Number of digits

Time
Quantum
factoring

Factoring

Shor, FOCS 1994



Quantum Computing is Different

Number of digits

Time
Quantum
factoring

Factoring

Shor, FOCS 1994



Quantum Computing is Different

Number of digits

Time
Quantum
factoring

Factoring

Shor, FOCS 1994



Foundational Question
What makes quantum computing work?

Entangle
ment?

Inter
ference?

Largeness 
of Hilbert 
space?

Contex
tuality?



Roadmap to Quantum Technologies



Quantum computers could revolutionize computation, and 
cryptography but are extremely hard to build
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Long term applications
(Use many resources)

SimulationCryptography Machine 
learning

Graph 
Problems

Well understood Under Investigation



Prospects of Quantum Computing

Can we build them?



State of The Art

# Qubits

Fault-tolerance
Cryptography

Simulation
optimization

Proof of
principle
experiments

We are here
50-100 qubits 
Small instances of
non-trivial algorithms

Noisy Intermediate-Scale
quantum devices (NISQ)
no quantum error
correction

Practical 
quantum

advantage?

Foundational
quantum advantage

demonstrations

G
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Where are we

50 qubits
C i rcuit Depth 100 : 20 cycles of 5 gates

• Quality of gates

1 qubit gate error: 1.6 · 10—3

2 qubit gate error: 6.2 · 10—3

3 Measurement error: 3.8 10—2

Quantum supremacy using a programmable superconducting processor,
Frank Arute, Kunal Arya, […], John M. Martinis, Nature volume 574, 505 (2019)



Where are we

Quantum supremacy using a programmable superconducting processor,
Frank Arute, Kunal Arya, […], John M. Martinis, Nature volume 574, 505 (2019)

50 qubits
Circuit depth ⇡
100 : 20 cycles 

of 5 gates

Quality of 
gates

qubit gate 
error: 1.6 · 

10—3

qubit gate 
error: 6.2 · 

10—3

Measurement 
error: 3.8 · 

10—2 



Hardware architectures

• Superconducting
circuits

• Ion Traps

• Photonics

• Quantum dots



Ethical challenges of Q-tech
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• Will it be militarized?
• Quantum sensing could be used for radar
• Quantum cryptoattacks
• Quantum simulation could speedup material 

research
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Ethical challenges of Q-tech

• Will it be militarized?
• Quantum sensing could be used for radar
• Quantum cryptoattacks
• Quantum simulation could speedup material 

research

• Faster computers/AI can increase inequality & bias

• Expensive resources: how and where will they be 
extracted?



☺ Quantum computers offer advantages in computation
☺ 50-1000 qubits devices are under construction

 Quantum applications are hard to find and implement

Noisy Intermediate Scale Quantum computers (NISQ)



What can we do with a quantum computer?

Can quantum computers demonstrate 
reliable & practical computational advantages?



How can you build a quantum computer that outperforms 
a classical one for some (potentially irrelevant) problem?



How can you build a quantum computer that outperforms 
a classical one for some (potentially irrelevant) problem?



Quantum Simulation

Dynamical quantum simulators (e.g., using 104-105 cold atoms in optical lattices) cannot be efficiently classically 
simulated with state-of-the-art tensor-network algorithms (a la DMRG). But are these good enough?
Trotzky et. al., Nature Phys. 8 (2012), Choi et al., Science 352 (2016)
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Random circuit sampling (“Google”)
They apply a long circuit of random physical interactions on superconducting qubits. 

Boson sampling
Generates random numbers using a random photonic circuit, hard to simulate based on complexity theoretic evidence.

| PHOTONS ⟩ COUNT

Boixo et al., Nature Phys. 14 (2016)
Bouland, Fefferman, Nirkhe, Vazirani, 
Nature Phys arXiv:1803.04402
Arute, Nature, Vol 574, 505 (2019)

Aaronson, Arkhipov, Th. Comp. 9 (2013)

Quantum Sampling Problems







Google’s experiment
Arute, Nature, Vol 574, 505 (2019)
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• Implementan un circuito cuántico aleatorio con 53 qubits, 
depth 40 (1500+ operaciones)

• Runs for 200 seconds

• They estimate a classical computer would require “10,000 
years on a 100,000 core supercluster” to simulate the same 
process

• The computer can still be simulated by classical 
computersand cannot be efficiently verified
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Resources
• News: https://thequantumdaily.com/

• Job search: 
– https://quantumcomputingreport.com/
– https://qt.eu/

• Research: https://scirate.com/

• Network: QIPC Spain, QUROPE

https://thequantumdaily.com/
https://quantumcomputingreport.com/
https://qt.eu/
https://scirate.com/
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